The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Long WANG(44hit)

41-44hit(44hit)

  • Distributed Channel Selection in CRAHNs with Heterogeneous Spectrum Opportunities: A Local Congestion Game Approach

    Yuhua XU  Qihui WU  Jinlong WANG  Neng MIN  Alagan ANPALAGAN  

     
    LETTER-Network

      Vol:
    E95-B No:3
      Page(s):
    991-994

    This letter investigates the problem of distributed channel selection in cognitive radio ad hoc networks (CRAHNs) with heterogeneous spectrum opportunities. Firstly, we formulate this problem as a local congestion game, which is proved to be an exact potential game. Then, we propose a spatial best response dynamic (SBRD) to rapidly achieve Nash equilibrium via local information exchange. Moreover, the potential function of the game reflects the network collision level and can be used to achieve higher throughput.

  • DOA Estimation Methods Based on Covariance Differencing under a Colored Noise Environment

    Ning LI  Yan GUO  Qi-Hui WU  Jin-Long WANG  Xue-Liang LIU  

     
    PAPER-Antennas and Propagation

      Vol:
    E94-B No:3
      Page(s):
    735-741

    A method based on covariance differencing for a uniform linear array is proposed to counter the problem of direction finding of narrowband signals under a colored noise environment. By assuming a Hermitian symmetric Toeplitz matrix for the unknown noise, the array covariance matrix is transformed into a centrohermitian matrix in an appropriate way allowing the noise component to be eliminated. The modified covariance differencing algorithm provides accurate direction of arrival (DOA) estimation when the incident signals are uncorrelated or just two of the signals are coherent. If there are more than two coherent signals, the presented method combined with spatial smoothing (SS) scheme can be used. Unlike the original method, the new approach dispenses the need to determine the true angles and the phantom angles. Simulation results demonstrate the effectiveness of presented algorithm.

  • A Framework of Centroid-Based Methods for Text Categorization

    Dandan WANG  Qingcai CHEN  Xiaolong WANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E97-D No:2
      Page(s):
    245-254

    Text Categorization (TC) is a task of classifying a set of documents into one or more predefined categories. Centroid-based method, a very popular TC method, aims to make classifiers simple and efficient by constructing one prototype vector for each class. It classifies a document into the class that owns the prototype vector nearest to the document. Many studies have been done on constructing prototype vectors. However, the basic philosophies of these methods are quite different from each other. It makes the comparison and selection of centroid-based TC methods very difficult. It also makes the further development of centroid-based TC methods more challenging. In this paper, based on the observation of its general procedure, the centroid-based text classification is treated as a kind of ranking task, and a unified framework for centroid-based TC methods is proposed. The goal of this unified framework is to classify a text via ranking all possible classes by document-class similarities. Prototype vectors are constructed based on various loss functions for ranking classes. Under this framework, three popular centroid-based methods: Rocchio, Hypothesis Margin Centroid and DragPushing are unified and their details are discussed. A novel centroid-based TC method called SLRCM that uses a smoothing ranking loss function is further proposed. Experiments conducted on several standard databases show that the proposed SLRCM method outperforms the compared centroid-based methods and reaches the same performance as the state-of-the-art TC methods.

  • A Near-Optimum Parallel Algorithm for a Graph Layout Problem

    Rong-Long WANG  Xin-Shun XU  Zheng TANG  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E87-A No:2
      Page(s):
    495-501

    We present a learning algorithm of the Hopfield neural network for minimizing edge crossings in linear drawings of nonplanar graphs. The proposed algorithm uses the Hopfield neural network to get a local optimal number of edge crossings, and adjusts the balance between terms of the energy function to make the network escape from the local optimal number of edge crossings. The proposed algorithm is tested on a variety of graphs including some "real word" instances of interconnection networks. The proposed learning algorithm is compared with some existing algorithms. The experimental results indicate that the proposed algorithm yields optimal or near-optimal solutions and outperforms the compared algorithms.

41-44hit(44hit)